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Quantum	matter	without	quasiparticles

•Want	to	study	properties	of	systems	without	quasiparticles

•First:	what	is	a	quasiparticle?

•Long	lived	additive	excitation	with	same	quantum	numbers	as	free	particle	

•How	do	we	identify	systems	without	quasiparticles?

•Fastest	relaxation

•No	long	lived	excitations	in	any	basis

•“Too	fast”:	cannot	study	long	time	behavior	with	conventional	techniques
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The	SYK	model:	a	solvable	system	without	
quasiparticles

• Model	of	N	flavors	of	Majorana fermions	with	infinite	range	q-body	interactions

• Solvable	in	large	N	limit

• Maximally	chaotic

• Disorder	average→melon	diagrams,	only	keep	one

• Full	propagator	
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Strong	coupling	behavior

• For																		→“Emergent	reparameterization symmetry

• Spontaneously	and	explicitly	broken→ Schwarzian action

• SYK	is	“dual”	to	nearly										
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Quantum	quenches	and	thermalization

•Quench	of	SYK→ probe	nonequilibrium dynamics	without	quasiparticles

•Possibly	reach	thermal	state

•What	is	a	thermal	state?

•System	is	its	own	heat	bath	for	subsystems

•Steady	state,	observables	reach	thermal	values	

• For	SYK,	our	working	definition	of	thermalization:

2-point	function	obeys	KMS,	T	from	energy	conservation

B
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Quench	procedure

• Start	with	SYK	model	with	q	and	pq interactions

• Turn	off	pq term	instantaneously

• Track	evolution	of	Green’s	function

• Does	SYK	Greens	function	thermalize?

• How	long	does	it	take	(scaling	dependence	on	T)?

• What	is	the	best	way	to	do	this?



Green’s	Functions	on	the	Closed-Time-
Contour

• Out	of	equilibrium,	must	study	full	evolution	along	contour

• Two	Greens	functions:																																														and

• Use	to	form	2	by	2	matrix

• Dyson	(matrix)	equation	from	disorder	average:
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The	Kadanoff-Baym equations

• How	do	we	study	2-pt	function	with	no	time	translation?

• Kadanoff-Baym equation	directly	from	Dyson	equation

• Go	to	real	time	plane	get	two	integro-differential	equations:

• For	Majorana fermions		have	condition:

• Always	true→everything	from																				!
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Causal	Structure

• Evolution	from	integral	structure	of	Kadanoff Baym equations

• Rewrite	everything	in	terms	of																				

• Step	functions→limits	of	integration

• For	point																→ integrate	“rectangle	region”

• Pre-quench

• Post	quench

• Pass	through	other	quadrants→causal	effect
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Numerics model

• Consider	the	SYK+random matrix	model		(p=1/2	q=4)	

• Only	pq:	integrable

• Both	terms:	“Fermi	liquid”	

• Only	q:	“strange	metal”

• Use										and									to	specify	quench

• Solve	full	Kadanoff-Baym equations	numerically

• Use	Majorana condition	→ solve	for
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Procedure

• Solve	Dyson	equation	self-consistently	for	thermal	initial	state

• Use	as	BC	for	quench

• Immediately	post	quench,	no	time	translation	invariance,	define

• Absolute	time:																				

• Relative	time:	

• Near	equilibrium,	varies	slowly	with							look	at	low	frequency	behavior

• Wigner	transform	

• Also	define
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Thermal	state	from	the	KMS	condition

• “Thermal”	2-pt	function	obeys	KMS

• KMS→FDT

• “Effective	inverse	T”:

• Start	with	thermal	state

• Right	after	quench	out	of	equilibrium

• ,												varies	slowly→“thermal”
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Effective	temperature

• from	fit	of	FDT	relation

• Relaxes	exponentially

• Check																					throughout	quench

• Determines	
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Relaxation	rate

• Know	final	temperature	from	energy	

conservation

• How	long	does	it	take	to	reach	final	

temperature	for															?	

• Exponential	rate

• Higher	temperature,						controlled	by	
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The	large	q	limit	

• Consider		large	q	interaction		(after	Large	N)	

• Expand

• exponential	form	of	self	energy

• Derivatives	of	KB	eqns→ Lorentzian-Liouville eqn

• Exact	solution	for	p=1/2,	or	2
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Quench	Regions

• General	solution	in	all	regions	

• Majorana condition→

• For																													equilibrium	solution	

• Structure	of	integrals	in	KB	equations	show	this	is	always	true		

• Need	to	solve	in	5	regions
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Quench	time	plane
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Boundary	Conditions

• Need	3	BCs

• Get														,														and																from																				,														,														,

• Too	many	BCs

• SL(2,C)	invariance:

• Constraint:																							

• Result	independent	of	choices	for																			,													,		

• SL(2,R)	invariance→ “gauge”	choice!
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B2(0)



Post-Quench	Solution

• Choose	ansatz

• Find	solution	for	p=1/2

• From	KMS:

• Only	depends	on	relative	time:	instant	thermalization!

gA(t1, t2) = ln


��2

4J 2 sinh2(�(t1 � t2)/2 + i✓)

�
(1)

hA1(t) =
ae�t + c

ce�t + d
, hA2(t) =

ae�2i✓e�t + b

ce�2i✓e�t + d

�f =
2(⇡ � 2✓)

�

� = 2J sin ✓ e�4i✓ =
(b� dhB1(�1))(a⇤ � c⇤h⇤

B1(�1))

(b⇤ � d⇤h⇤
B1(�1))(a� chB1(�1))



Relation	to	the	Schwarzian Action

• SYK	described	by	Schwarzian for

• Take										from	KB	equations

• is	solution	to	Schwarzian EOM

• Thermalization connected	to	reparameterization modes

• Schwarzian should	also	exhibit	instantaneous	thermalization
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Final	Remarks

• Low	energy	limit,	rate	linear	in	T	as	expected

• Also	depends	on	q,	what	do	1/q2 corrections	look	like?

• 2-point	function	instantly	thermalizes,	but	other	quantities	do	not

• Which	quantities	thermalize	and	on	what	timescale	(some	do	not)?

• When	does	the	large	N	limit	break	down?

• What	other	consequences		does	this	have	in	gravity?


